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dual QFT. The ingredients that enter in the construction are (i) gauge invariant variables

so that the KK reduction is independent of any choice of gauge fixing; (ii) the non-linear

KK reduction map from 10 to 5 dimensions (constructed perturbatively in the number

of fields); (iii) application of holographic renormalization. A non-trivial role in the last

step is played by extremal couplings. This map allows one to reliably compute vevs of

operators dual to any KK fields. As an application we consider a Coulomb branch solution

and compute the first two non-trivial vevs, involving operators of dimension 2 and 4, and

reproduce the field theory result, in agreement with non-renormalization theorems. This

constitutes the first quantitative test of the gravity/gauge theory duality away from the

conformal point involving a vev of an operator dual to a KK field (which is not one of the

gauged supergravity fields).
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1. Introduction

Gravity/gauge theory dualities relate string theory on spacetimes that asymptote to AdSm×
X, where X is a compact manifold and gauge theory residing on the conformal boundary of

the AdS part of the geometry. In the initial work [1] the dual theory was a conformal field

theory (CFT) and the bulk spacetime AdSm×X (rather than asymptotic to it), but it was

soon recognized that the duality can be extended to describe quantum field theories that

can be obtained from the CFT by either adding new terms in the action or considering

vacua where the conformal symmetry is spontaneously broken. Both of these cases are

described gravitationally by a solution that is asymptotic to AdSm × X.

Despite much work however basic questions still remain. One such question that will

be the subject of this paper is:

Given a ten dimensional solution that is asymptotic to AdSm×X how does one

compute the vacuum expectation values of gauge invariant operators?

Roughly speaking vevs of chiral primary operators should appear in the radial expansion

of the bulk solution. However making this precise proves to be a lot more subtle that

one might have anticipated, and even qualitative features are not reproduced correctly

by naive methods. The answer to this question should follow from the basic AdS/CFT

dictionary [2, 3]. This is indeed the case but in order to implement the idea one has to

sharpen existing methods and overcome several technical issues.

To illustrate the issues involved it is instructive to consider a simple example where

the physics of the solution is well understood. A class of such examples is provided by

multicenter D3-brane solutions, which in the near-horizon limit correspond to the Coulomb

branch of N = 4 SYM [4]. These examples are particularly interesting because the QFT

vevs are protected by a non-renormalization theorem, and the gravitational results must

therefore agree exactly with those computed at weak coupling. The metric is of the well-

known form

ds2 = H(x⊥)−1/2dx2
|| + H(x⊥)1/2dx2

⊥ (1.1)

where H is a harmonic function in transverse directions. For a distribution σ(~y) of D3

branes, the harmonic function reads

H(x⊥) =

∫

d6y
σ(~y)

|~x⊥ − ~y|4 =
Q0

r4

(

1 +

∞
∑

k=1

QkY
k

rk

)

(1.2)

where in the last equality we expanded in r2 = |x⊥|2, Y k are spherical harmonics and

Qk are numerical constants that depend on the distribution σ(~y). Inserting this in (1.1)

and expanding in r results in a metric that is asymptotically AdS5 × S5. The QFT vevs

should be encoded in the asymptotics and the purpose of this work is to show how to

unambiguously extract this information.

The solutions under discussion are special in that they are uniquely determined in

terms of a harmonic function. Furthermore, the spherical harmonics appearing in (1.2)

are in 1-1 correspondence with the chiral primary operators of N = 4 SYM and the radial
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power at which they appear is the correct power for their coefficients to correspond to the

vevs of the dual operator. This led [5] to propose that these coefficients are proportional to

vevs of the corresponding operators. Although this is a well motivated proposal, it is not

clear how one would generalize it to the general case where the solution is not determined

by a harmonic function. Even for the case at hand there are several open questions. For

instance, inserting the harmonic function in the metric leads to terms involving powers of

spherical harmonics whose meaning is not clear and in general there is also a dependence

on the radial coordinate used to perform the asymptotic expansion. The simplifications

special to such cases (i.e. when the solution is determined by a harmonic function) will

be discussed in a separate publication [6]. In this paper we strive for generality, so our

starting point will be general asymptotically AdS5 × S5 metrics and we will only use the

CB solutions in order to illustrate the general procedure.

Recall that the basic dictionary of the gravity/gauge theory duality [2, 3] states that

(i) there is a bulk field corresponding to each gauge invariant operator and (ii) the string

partition function with bulk fields satisfying appropriate boundary conditions is equal to

the generating functional of QFT correlators with the boundary conditions playing the

role of sources. In particular, one could compute vevs (in the large N and large ’t Hooft

coupling limit) by differentiating the supergravity on-shell action once w.r.t. sources. In

implementing this procedure however one finds several obstacles.

First, the relation in (ii) should be understood as a “bare relation” as both sides di-

vergence. To make the procedure well-defined one must renormalize. This is a standard

procedure on the field theory side. On the gravitational side, the corresponding proce-

dure, denoted holographic renormalization, was developed in a series of papers [7 – 10] (see

also [11]-[16] for related work and [17] for a review).1 After renormalization is done, the

one point functions can be computed in all generality. The answer relates the one point

function to certain coefficients in the asymptotic expansion of the bulk fields. So given any

solution of 5d gravity coupled to matter one could read off the vevs of the dual operators

by looking at the asymptotics.

We would like to emphasize that the procedure of renormalization is essential for

correctly extracting the vevs. To give an example where a naive prescription fails, consider

the case of the CB solution corresponding to a distribution of D3 branes on a disc of radius

l. The 5d metric obtained by reducing the 10d solution over the sphere has the following

asymptotics,

ds2 =
dẑ2

ẑ2
+

1

ẑ2

(

1 − l4

18
ẑ4 + O(ẑ6)

)

dxidxi (1.3)

A naive prescription for reading off vevs that is often quoted in the literature is that the vev

of an operator can be obtained, up to a (non-zero) numerical constant, from the normal-

izable mode of the corresponding bulk field. The bulk metric is dual to the stress energy

tensor so one would be tempted to identify the coefficient of the ẑ4 term with the vev of

1The starting point in the analysis in these papers was the lower dimensional AdS gravity obtained by

reducing the original theory over the compact space X. A discussion that starts from higher dimensions

can be found in [18, 19].
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the stress energy tensor. This is clearly incorrect since that would imply non-zero vac-

uum energy for the dual theory but the solution is supersymmetric so the vacuum energy

should be equal to zero. Indeed the 1-point function extracted using holographic renor-

malization [8, 9] contains additional terms (see (5.11) below) and taking those into account

one finds the expected result, zero. Such subtleties are present in all cases, including that

of scalar fields. For example, for deformation flows the vevs of all operators should be

equal to zero, but there are examples where the above naive prescription leads to non-zero

values. Again the correct 1-point functions include additional terms so that the total result

is zero (see [8, 9, 20]).

An analysis that starts from the lower dimensional gauged supergravity is sufficient

if one is only interested in computing vevs for operators dual to fields of the gauged su-

pergravity. There is however an infinity of other (half supersymmetric) gauge invariant

operators which would then ab initio be excluded from the analysis. These operators are

dual to massive KK fields. The map between KK fields and gauge invariant operators was

worked out in [3] (and subsequent papers) using the computation of the KK spectrum of

AdS5 × S5 in [21]. In this paper a linearized analysis around AdS5 × S5 was performed.

This analysis provides an explicit map (in a specific gauge) between linearized solutions

of the ten dimensional equations of motion and linearized solutions of the dimensionally

reduced five dimensional equations. To compute the vevs however we need to know the

map at the non-linear level. To illustrate this, let sk be ten-dimensional fields and let Sk be

the corresponding five dimensional fields. In general the reduction map will be non-linear

and takes the form

Sk = sk +
∑

lm

(

Jklmslsm + LklmDµslDµsm + O[s]3
)

(1.4)

where Jklm and Lklm are numerical coefficients and we retain only terms quadratic in the

fields. (We also suppress contributions on the right hand side from other scalar and non-

scalar fields since they are not necessary to illustrate our point.) If Sk is dual to an operator

of dimension k then we would need to extract the coefficient of order zk to determine the

operator’s vev. Clearly, quadratic terms with l + m = k will also contribute at the same

order and therefore such non-linear terms in the KK map cannot be ignored. Similarly

cubic and higher order in fluctuation terms that are of order zk will also contribute, along

with non-linear contributions involving other supergravity fields.

So to read off the vevs we need to understand the KK reduction map at the non-

linear level. However, if we are interested in the vev of an operator of a given dimension,

only certain non-linear terms need to be computed, namely the ones that could possibly

contribute to the vev. For instance, if we are interested in computing the vev of an operator

of dimension 4, we would only need to keep terms quadratic in the fields dual to operators

of dimension 2. This in effect truncates the reduction to a finite number of fields. This

should be contrasted with the issue of consistent truncation. When the latter is possible

one keeps only the “massless” KK modes in the reduction. In our case we keep massive

KK fields as well. However, only a finite subset of them contribute to the asymptotics up

to a given order.
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Another issue is that of gauge fixing. The analysis in [21] was done in the de Don-

der gauge. Generically however a given supergravity solution will not be in this gauge

and finding the coordinate transformation that would bring the solution to this gauge is a

complicated task. To deal with this issue we will instead develop a “gauge invariant KK

reduction”. Instead of fixing the gauge, we combine the fields in gauge invariant combi-

nations. This can be done systematically in an expansion in the number of fields. Having

worked out these combinations, one can relax the de Donder gauge condition by simply

replacing every field by its gauge invariant generalization in all results obtained in a specific

gauge.

To summarize, we argue that in order to compute the vevs we need to obtain the

non-linear KK map in terms of gauge invariant variables to appropriate order in the num-

ber of fields. This procedure results in five dimensional field equations and an explicit

map between 10d solutions and solutions of these 5d equations. The 5d equations can

be integrated into a 5d action and from here one can obtain the 1-point functions follow-

ing the procedure of holographic renormalization. There is however an additional sub-

tlety. In some cases the five dimensional equations contain no couplings between certain

fields but boundary interactions exist [22]. These boundary couplings are in fact respon-

sible for extremal n-point functions, namely correlators involving operators of dimensions

{k1=k2+ · · ·+kn, k2, . . . , kn}. One must take into account these additional boundary terms

when working out the holographic 1-point functions.

Combining the non-linear, gauge invariant KK reduction map with the holographic

1-point functions we finally arrive at a well defined map between the asymptotics of a 10d

solution and vevs of gauge invariant operators.

This paper is organized as follows. In the next section we discuss the Coulomb branch

of N = 4 SYM. We focus on a specific case where the vevs are uniformly distributed on a

disc and compute all vevs of gauge invariant operators. The challenge for the gravity/gauge

theory duality is to reproduce exactly these vevs holographically. In sections 3, 4 and 5

we build the holographic map. In section 3 we construct gauge invariant variables; in

section 4 we work out the KK map to second order in the fields and in section 5 we derive

the holographic 1-point functions. In section 6 we discuss the supergravity solution dual to

the CB state discussed in section 2 and use the map developed in sections 3, 4, 5 in order

to compute the first two non-trivial vevs and find perfect agreement with field theory!

We conclude in section 7 with a discussion of our results. Several technical details are

relegated to appendices A, B and C. In appendix A we discuss the harmonic expansion of the

antisymmetric gauge field; in appendix B we summarize and develop several results about

spherical harmonics with SO(4) symmetry and in appendix C we discuss the computation

of the field equations to second order in fluctuations.

2. N = 4 SYM on the Coulomb branch

N = 4 SYM contains 6 scalar fields Xi1 in the adjoint representation of the gauge group

that we take to be SU(N). The Coulomb branch of N = 4 SYM corresponds to giving a

vacuum expectation value (vev) to the scalars subject to the condition [Xi1 ,Xi2 ] = 0. Upon
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diagonalizing the scalar fields the moduli space is parametrized by the 6(N −1) eigenvalues

of vevs (modulo the Weyl group). In the large N limit we can approximate the eigenvalues

by a continuous distribution. Notice that the Coulomb branch still preserves N = 4

supersymmetry but the conformal symmetry and the 16 superconformal supersymmetries

are broken. This implies that the vevs are protected from acquiring quantum corrections, as

we explain at the end of this section. So this example represents an ideal case for a precision

test of the gravity/gauge theory correspondence in a non-conformal setting. It has been

known since [4] that there is a one to one correspondence between the Coulomb branch

of N = 4 SYM and multicenter D3 brane solutions. Since the vevs do not renormalize,

however, one should be able to establish a strong result, namely the exact values of vevs

should be reproducible by a gravitational computation.

We will consider in this paper the specific case of a uniform distribution of eigenvalues

of X1 and X2 on a disc of radius a and vanishing vev for the remaining scalars, 〈X3〉 =

〈X4〉 = 〈X5〉 = 〈X6〉 = 0. Let

X1 = ρ cos φ, X2 = ρ sinφ (2.1)

To leading order in the large N limit we may represent the eigenvalues by a uniform

continuous distribution,

σ(ρ, φ) =
N

πa2
. (2.2)

Notice that the configuration corresponding to this continuous distribution preserves an

SO(4) × SO(2) symmetry of SO(6).

To compare with supergravity we would like to parametrize the moduli space by vevs

of composite operators. We consider the following chiral primaries (CPOs) of N = 4 SYM

OI1 = NI1C
I1
i1···ikTr(Xi1 · · ·Xik), (2.3)

where NI1 is a normalization factor and CI1 is a totally symmetric traceless rank k tensor

of SO(6) which is normalized such that
〈

CI1CI2
〉

= CI1
i1···ikCI2

i1···ik = δI1I2 . The SYM action

is normalized such that the relevant propagators are

〈

Xi
a(x)Xj

b (y)
〉

=
g2
YMδabδ

ij

(2π)2 |x − y|2
, (2.4)

where a, b are color indices.

The cases of interest are the operators which are singlets under the decomposition of

SO(6) into SO(2) × SO(4) since non-singlet operators have zero vev. These operators can

be obtained from the explicit expression of scalar harmonics in appendix B.1 by suitably

replacing xi1 by Xi1 , compare (2.3) and (B.11). The result for the singlets is

O2n = N2n
(−)n

2n
√

2n + 1
Tr

(

n
∑

m=0

(−)m

(

n

m

)(

n + m + 1

n + 1

)

ρ2mR2(n−m)

)

. (2.5)
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where R2 =
∑6

i=1(X
i)2. The explicit expressions for the lowest dimension operators are

thus

O2 = N2
1

2
√

3
Tr(3ρ2 − R2); (2.6)

O4 = N4
1

4
√

5
Tr(10ρ4 − 8ρ2R2 + R4); (2.7)

O6 = N6
1

8
√

7
Tr(35ρ6 − 45ρ4R2 + 15ρ2R4 − R6). (2.8)

To compute the vev of these operators we now use

〈Tr(ρp)〉 =

∫ a

0
dρρ

∫ 2π

0
dφσ(ρ, φ)ρp =

2N

(p + 2)
ap, (2.9)

and the identity

(−)n

(

n
∑

m=0

(−)m

(

n

m

)(

n + m + 1

n + 1

))

= (n + 1). (2.10)

to arrive at
〈

O2n
〉

=
N2na2n

2n
√

2n + 1
N. (2.11)

This result was derived by a tree-level computation. However it remains uncorrected

both perturbatively and non-perturbatively. A quantum correction to the vev of the scalars

Xi would result from a non-vanishing tadpole contribution and this would induce a cor-

rection to the effective potential. However, there are no perturbative or non-perburtative

quantum corrections to the low energy (2-derivative) effective action of N = 4 SYM [23, 24]

so the vevs of the scalars are not corrected. The only remaining issue is operator mixing.

Indeed, chiral primary operators mix with certain multi-trace operators. However, this is a

subleading effect2 in 1/N and we are considering the leading behavior. It follows that the

operators have the same vev (2.11) at strong coupling. The challenge for the AdS/CFT

correspondence is to reproduce these vevs.

3. KK reduction with gauge invariant variables

The IIB SUGRA field equations3 for the metric and 5-form field strength are given by:

RMN =
1

6
FMPQRSFM

PQRS , F = ∗F. (3.1)

2The only exception is the case of extremal operators where the mixing with multitrace operators is

not subleading [22]. In this paper it was argued that the supergravity fields are dual to the single trace

operators so these are the relevant operators to consider.
3The field strength differs by a factor of 4 from the conventions in [25]. Index conventions: M, N, . . .

are 10d indices, µ, ν, . . . are AdS5 indices, a, b, . . . are S5 indices. x denotes AdS coordinates and y S5

coordinates.
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These equations admit an AdS5 × S5 solution

ds2
o =

dz2

z2
+

1

z2
dx2

|| + dθ2 + sin2 θdΩ2
3 + cos2 θdφ2 (3.2)

F o
µνρστ = εµνρστ , F o

abcde = εabcde

We will consider here solutions that are deformations of AdS5 × S5 such that

gMN = go
MN + hMN , (3.3)

FMNPQR = F o
MNPQR + fMNPQR.

The fluctuations can be expanded in S5 harmonics:

hµν(x, y) =
∑

h̃I1
µν(x)Y I1(y)

hµa(x, y) =
∑

(B̃I5
(v)µ(x)Y I5

a (y) + B̃I1
(s)µ(x)DaY

I1(y))

h(ab)(x, y) =
∑

(φ̂I14
(t) (x)Y I14

(ab)(y) + φI5
(v)(x)D(aY

I5
b) (y) + φI1

(s)(x)D(aDb)Y
I1(y))

ha
a(x, y) =

∑

π̃I1(x)Y I1(y) (3.4)

and

fµνρστ (x, y) =
∑

5D[µbI1
νρστ ](x)Y I1(y)

faµνρσ(x, y) =
∑

(bI1
µνρσ(x)DaY

I1(y) + 4D[µbI5
νρσ](x)Y I5

a (y))

fabµνρ(x, y) =
∑

(3D[µbI10
νρ]

(x)Y I10
[ab]

(y) − 2bI5
µνρ(x)D[aY

I5
b]

(y))

fabcµν(x, y) =
∑

(2D[µbI5
ν](x)εabc

deDdY
I5
e (y) + 3bI10

µν (x)D[aY
I10
bc] (y))

fabcdµ(x, y) =
∑

(DµbI1
(s)(x)εabcd

eDeY
I1(y) + (ΛI5 − 4)bI5

µ (x)εabcd
eY I5

e (y))

fabcde(x, y) =
∑

bI1
(s)

(x)ΛI1εabcdeY
I1(y) (3.5)

Numerical constants in these expressions are inserted so as to match with the conventions

of [21], see appendix A. Parentheses denote a symmetric traceless combination (i.e. A(ab) =

1/2(Aab + Aba) − 1/5gabA
a
a). Y I1, Y I5

a , Y I14
(ab) and Y I10

[ab] denote scalar, vector and tensor

harmonics whilst ΛI1 and ΛI5 are the eigenvalues of the scalar and vector harmonics under

(minus) the d’Alembertian. The subscripts t, v and s denote whether the field is associated

with tensor, vector or scalar harmonics respectively, whilst the superscript of the harmonic

label In derives from the number of components n of the harmonic.

Not all fluctuations are independent however. Some of the modes are diffeomorphic to

each other or to the background solution, i.e. certain δhMN and δfMNPQR are generated

by a coordinate transformation,

xM ′ = xM − ξM . (3.6)

These, up to terms linear in fluctuations, are given by

δhMN = (DM ξN + DNξM ) + (DM ξP hPN + DNξP hMP + ξP DP hMN ); (3.7)

δfMNPQR = 5D[MξSF o
NPQR]S + (5D[MξSfNPQR]S + ξSDSfMNPQR).
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The gauge parameter ξM (x, y) can be expanded in harmonics as

ξµ(x, y) =
∑

ξI1
µ (x)Y I1(y); (3.8)

ξa(x, y) =
∑

(ξI5
(v)(x)Y I5

a (y) + ξI1
(s)(x)DaY

I1(y)).

In much of the previous literature this issue was dealt with by imposing a gauge fixing

condition, most notably the de Donder-Lorentz gauge fixing condition

Dah(ab) = Dahaµ = 0. (3.9)

This amounts to setting to zero the coefficients B̃I1
(s)µ, φI5

(v), φ
I1
(s) (as can be easily seen by

inserting (3.4) in (3.9)). Although this gauge is a very convenient choice for deriving the

spectrum, it is not very well suited for holography since generically solutions will not be

in that gauge. For this reason instead of gauge fixing this symmetry we will derive gauge

invariant combinations of fluctuations. This will allow us to switch easily between different

gauges.

3.1 Gauge invariance at linear order

We first discuss gauge invariance at leading order, i.e. we consider the fluctuation inde-

pendent terms in (3.7). These transformations map the fluctuations to the background

solution. Under these transformations the coefficients in (3.4) transform as

δh̃I1
µν = DµξI1

ν + DνξI1
µ , δB̃I5

(v)µ = DµξI5
(v), δB̃I1

(s)µ = DµξI1
(s) + ξI1

µ ,

δφ̂I14
(t) = 0, δφI5

(v) = 2ξI5
(v), δφI1

(s) = 2ξI1
(s), δπ̃I1 = 2ΛI1ξI1

(s). (3.10)

It follows that φ̂I14
(t) is gauge invariant to this order and for the rest of fields we can construct

the following gauge invariant combinations

π̂I1 = π̃I1 − ΛI1φI1
(s) (3.11)

B̂I5
(v)µ = B̃I5

(v)µ − 1

2
DµφI5

(v)

ĥI1
µν = h̃I1

µν − DµB̂I1
(s)ν − DνB̂

I1
(s)µ, I1 6= 0.

where we define

B̂I1
(s)µ = B̃I1

(s)µ − 1

2
DµφI1

(s) ⇒ δB̂I1
(s)µ = ξI1

µ . (3.12)

Note that the last formula in (3.11) is only valid for I1 6=0 (the fields B̃I1
(s)µ and φI1

(s) exists

only for I1 > 0, since Y 0 is a constant). For I1 = 0, h̃0
µν is a deformation of the background

metric and from (3.10) we see that it indeed transforms as a metric.

Similarly, the leading term in the 5-form transformation implies for the coefficients in

the harmonic expansion the following transformations

δbI1
(s) = ξI1

(s), δbI1
µνρσ = εµνρσ

τ ξI1
τ , δbI5

µ =
1

(ΛI5 − 4)
DµξI5

(v),

δbI5
µνρ = δbI10

µν = 0, (3.13)
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so that the gauge invariant combinations are

b̂I1 = bI1
(s) −

1

2
φI1

(s) (3.14)

b̂I1
µνρσ = bI1

µνρσ − εµνρσ
τ B̂I1

(s)τ

b̂I5
(v)µ = bI5

(v)µ − 1

2(ΛI5 − 4)
DµφI5

(v). (3.15)

and the fields bI5
µνρ and bI10

µν .

3.2 Gauge invariance at quadratic order

In this subsection we will derive the gauge invariant combinations to second order in the

fluctuations. The idea is the same as in the previous subsection: we insert the harmonic

expansion of the fluctuations and the gauge parameter into (3.7) (which now includes

all terms) and read off the transformation of each coefficient. Then we seek a quadratic

modification of each field combination that is gauge invariant. One complication in this

case is that because the r.h.s. of (3.7) is non-linear one needs to project onto the basic of

spherical harmonics in order to extract the transformation of the coefficients. The analysis

can be readily carried out in all generality but for the applications considered in this

paper it is sufficient to consider only the modes that couple to scalar harmonics and their

derivatives, i.e. we set to zero all fields that couple to vector and tensor harmonics (and

their derivatives) (as well as ξI5
(v)). Including these fields would result in additional terms

in the gauge invariant combinations below. Since no confusion can arise we also drop the

subscript (s) from relevant fields and use the condensed notation for indices and arguments:

φI1
(s) → φ1, π̃I1 → π̃1, z(k1) → z1, a(k1, k2, k3) → a123 etc. Note that we consistently use

the notation ψ̃ to denote a field in the harmonic expansion of the supergravity field; ψ̂ to

denote a field which is gauge invariant to linear order and ψ to denote the field which is

gauge invariant to quadratic order.

3.2.1 Scalar fields

We first discuss the scalar fields, π̃I1, φI1
(s) and bI1

(s). Their transformations are given by (we

suppress the linear terms determined in the previous section and factors 〈CI1CI2CI3〉):

δπ̃1 =
1

z1

(

2φ2ξ3d123 +

(

2

5
Λ2ξ2π̃3 + ξµ2Dµπ̃3

)

a123 + (ξ2π̃3 + 2ξµ2B̃3
µ)b123

)

; (3.16)

δφ1 =
1

z1q1

(

ξ2φ3e123 +

(

ξµ2Dµφ3 +
2

5
ξ2π̃3

)

d213 + 2ξµ2B̃3
µc123

)

; (3.17)

δb1 =
1

Λ1z1

(

(ξµ2Dµb3 + Λ2b2ξ3)(b123 + Λ3a123)
)

, (3.18)

where the triple overlaps a123 = a(k1, k2, k3), b123 = b(k1, k2, k3) etc are defined in ap-

pendix B.1 and summation over (I2, I3) is implicit.

From these transformations one can infer quantities which are gauge invariant to

quadratic order:

π1 = π̂1 − 1

2z1

((

2

5
Λ2a123 + b123 −

2Λ1

5q1
d213

)

φ2π̂3 +

(

d123 −
Λ1

2q1
e123+ (3.19)
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Λ3

(

1

5
Λ2a123 +

1

2
b123 −

Λ1

5q1
d213

))

φ2φ3

+2B̂2
µ

(

Dµπ̂3a123 + B̂3µ

(

b123 −
2Λ1

q1
c123

)))

;

b1 = b̂1 +
1

z1

(

Λ3

2Λ1
φ2b̂3b312 +

1

10q1
d213φ

2π̂3 +

(

Λ3

8Λ1
b312 +

Λ1

20q1
d213 +

1

8q1
e123

)

φ2φ3

+B̂2
µ

(

1

2q1
B̂3µc123 +

1

Λ1
Dµb̂3b213

))

. (3.20)

The I1 = 0 sector is special because the scalar harmonic is constant. Notice that we only

have one scalar in this sector, namely π̃0. Working out the gauge transformation yields

δπ̃0 = z(k)

(

2ξIφIq(k) +
2

5
ΛIξI π̃I + ξµIDµπI − (ξI π̃I + 2ξµIBI

µ)ΛI

)

. (3.21)

From here we obtain that the gauge invariant combination is (notice that π̃0 was gauge

invariant to leading order, i.e. π̂0 = π̃0)

π0 = π̃0 + z(k)

(

3

10
ΛIφI π̂I − 1

4
ΛI(ΛI + 8)φIφI − B̂µIDµπ̂I + ΛIB̂µIB̂I

µ

)

, (3.22)

where the summation over I is implied and π̂I and B̂µI are defined in (3.11) and (3.12).

Let us now consider the field φ̂(t) associated with the tensor harmonic. Whilst this is

gauge invariant to leading order, at the next order it transforms as

δφ̂1
(t) =

1

z(t)1

(

ξ2φ3e
(t)
123 −

(

ξµ2Dµφ3 +
2

5
ξ2π̃3 − 2ξµ2B̃3

µ

)

c
(t)
123

)

, (3.23)

where the normalization factor z(t) and overlap integrals c
(t)
123 etc are defined in the ap-

pendix B.1. Thus the gauge invariant combination to this order is

φ1
(t) = φ̂1

(t) +
1

z(t)1

((

−B̂µ2B̂3
µ +

1

5
π̂2φ3 +

1

10
Λ3φ2φ3

)

c
(t)
123 −

1

4
e
(t)
123φ

2φ3

)

. (3.24)

3.2.2 Tensor fields

We now turn to the non-scalar sector. As we will see in the next section the field equations

algebraically relate the field bI1
µνρσ to the field bI1

(s) (more precisely the field equations relate

the corresponding gauge invariant combinations) so we need not discuss this field. Fur-

thermore, B̃I1
(s)µ is pure gauge. It is useful however to introduce the following combination

that transforms nicely up to quadratic order

B1
µ = B̂1

µ+
1

z1

(

−1

2

(

1

10
Dµφ2π̂3+ B̂ν2ĥ3

µν

)

a123 + Dµ

(

φ2φ3

(

−1

8
b123 +

1

8q1
e123 +

Λ3

5q1
d213

)

+
1

10q1
d213φ

2π̂3 +
1

2

(

1

q1
c123 − a123

)

B̂2
νB̂ν3

))

. (3.25)

This transforms as

δB1
µ = ξ1

µ +
1

z1
(ξ2B̂3

µb123 + ξν2DνB̂3
µa123). (3.26)
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Now consider the KK graviton modes, h̃I1
µν . The gauge transformation reads

δh̃1
µν =

1

z1

(

(Dµξλ2h̃3
λν + Dνξ

λ2h̃3
λµ + ξλ2Dλh̃3

µν)a123 + (ξ2h̃3
µν + 2D(µξ2B̃3

ν))b123

)

.

(3.27)

From this we derive the following gauge invariant combination (I1 6= 0)

h1
µν = h̃1

µν − DµB1
ν − DνB1

µ − 1

z1

(

1

2
(φ2ĥ3

µν +
1

2
Dµφ2Dνφ3)b123 (3.28)

+(DµB̂λ2ĥ3
νλ+ DνB̂

λ2ĥ3
µλ+ B̂λ2Dλĥ3

µν + DµB̂λ2DνB̂3
λ+ B̂λ2B̂3

λg0
µν− B̂2

µB̂3
ν)a123

)

.

Let us now discuss the I1 = 0 case. h̃0
µν transforms as

δh̃0
µν = Dµξλ0h̃0

λν + Dνξλ0h̃0
λµ + ξλ0Dλh̃0

µν (3.29)

+z(k)
(

DµξλI h̃I
λν + DνξλI h̃I

λµ + ξλIDλh̃I
µν − ΛI(ξI h̃I

µν + 2D(µξIB̃I
ν))

)

.

We introduce

h0
µν = h̃0

µν +
1

3
π0go

µν − z(k)

(

1

2
ΛI

(

φI ĥI
µν +

1

2
DµφIDνφ

I

)

(3.30)

+DµB̂λI ĥI
νλ + DνB̂λI ĥI

µλ + B̂λIDλĥI
µν + DµB̂λIDνB̂

I
λ + B̂λIB̂I

λgo
µν − B̂I

µB̂I
ν

)

(the term linear in π0 was added in anticipation of the fact that it is h̃0
µν + 1

3 π̃0go
µν that

satisfies the linearized equations of motion, see the discussion around (4.5)). Recall that

this mode is a correction to the spacetime metric

gµν = go
µν + h0

µν , (3.31)

so the combination should transform as

δgµν = Dg
µζν + Dg

νζµ, (3.32)

where Dg is the covariant derivative of the corrected metric (3.31). Indeed one finds this

to hold with

ζν = ξµ0gµν + z(I)(ξλIDλB̂I
ν − ΛIξIB̂I

ν). (3.33)

4. Field equations

The field equations for the coefficients in the harmonic expansion were derived in the de

Donder gauge at linear order by [21] and at quadratic order in [26 – 28]. The gauge invariant

variables derived in the previous section allow one to relax the gauge condition. Indeed

notice that the gauge invariant variables when evaluated in the de Donder gauge become

equal to the fields used in [21, 26 – 28]. It follows (and we have explicitly checked this in

detail) that the field equations with no gauge condition imposed can be obtained from the

results in [21, 26 – 28] by simply replacing each field with its gauge invariant generalization.
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4.1 Linear order

In this subsection we summarize some of the results of [21] (a summary of the derivation

is given in appendix C). As just mentioned, one can relax the gauge fixing condition by

replacing all fields by the hatted versions given in the previous section.

The scalars satisfy the following equations

¤ŝI1 = k(k − 4)ŝI1 , k ≥ 2,

¤t̂I1 = (k + 4)(k + 8)t̂I1 , k ≥ 0, (4.1)

¤φ̂I14
(t) = k(k + 4)φ̂I14

(t) k ≥ 2,

where we introduce the combinations

ŝI1 =
1

20(k + 2)
(π̂I1 − 10(k + 4)b̂I1), t̂I1 =

1

20(k + 2)
(π̂I1 + 10kb̂I1), (4.2)

with inverse relations b̂I1 = −ŝI1 + t̂I1, π̂I1 = 10kŝI1 + 10(k + 4)t̂I1 .

The remaining modes that couple to scalar spherical harmonics are the KK gravitons.

They are described by transverse and traceless fields

φI1
(µν) = ĥI1

(µν) −
1

(k + 1)(k + 3)
D(µDν)

(

2

5
π̂I1 − 12b̂I1

)

, I1 6= 0. (4.3)

satisfying the equation,

(¤ − (k(k + 4) − 2))φI1
(µν) = 0, I1 6= 0. (4.4)

The I1 = 0 case is special in that this mode describes a deformation of the background

metric. The combination that satisfies the 5d linearized Einstein equation is

h′
µν

0 =

(

h̃0
µν +

1

3
go
µν π̃0

)

. (4.5)

One can understand the origin of the shift by π̃0 by considering the reduction of the

10d action to five dimensions. Keeping terms linear in the fluctuations, the volume of

compactification manifold is
∫

d5y
√

det gab = π3

(

1 +
1

2
π̃0

)

(4.6)

It follows that the reduced action is

S5d ∼
∫

d5x
√

det gµν

((

1 +
1

2
π̃0

)

R + · · ·
)

(4.7)

and a Weyl transformation is required to bring the action to the Einstein frame. The

transformation from h̃0
µν to h′

µν
0 is precisely this Weyl transformation.

4.2 Quadratic order

The derivation of the equations of motion to second order in fluctuations was discussed

in [26 – 28] and is summarized in appendix C. For our applications it is sufficient to retain

only the quadratic coupling to the field s2.
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s2 s4 t0 t2 t4 φ2
(t)

Dψ22 −4
√

3
3 − 172

5
√

5
229
75

76
√

3
25

52√
5

48
25

Eψ22

√
3

10
3√
5

−11
20 −3

√
3

10 − 1√
5

−4
5

Fψ22
1

12
√

3
7

9
√

5
1
60

√
3

180 0 2
45

Aψsφ
7
√

3
40

7
2
√

5
− 3

40 −7
√

3
120 − 1

2
√

5
−1

5

Aψφφ −17
√

3
160 − 9

10
√

5
− 1

80
3
√

3
160

1
8
√

5
1
20

AψsB −
√

3
24 − 3

4
√

5
− 1

48 −
√

3
120 0 0

AψBB −
√

3
32 − 1

4
√

5
− 1

80 −
√

3
160 0 1

20

Jψ22
−2

√
3

15 − 83
18

√
5

3
40

2
√

3
45

1
2
√

5
2
45

Lψ22 − 1
12

√
12

− 7
18

√
5

− 1
120 −

√
3

360 0 − 1
90

w(ψ)
√

8
3

2
√

3
5

8
√

5√
3

4
√

7√
10

12√
70

√
15
4

λΨ22 − 4√
6

0 0 0 0 0

Table 1: Coefficients in (4.8), (4.9), (4.10) and (4.11).

4.2.1 Scalar fields

The corrected field equation for the scalar fields ψ = {s2, s4, t0, t2, t4, φ2
(t)} is given by

(¤ − m2
ψ)ψI = Dψ22(ŝ

2)2 + Eψ22Dµŝ2Dµŝ2 + Fψ22D(µDν)ŝ
2D(µDν)ŝ2, (4.8)

where the coefficients Dψ22, Eψ22, Fψ22 can be obtained from the results in appendix C

and are given in table 1. The fields entering the l.h.s. of this equation are the gauge

invariant combinations to second order whilst the fields in the r.h.s. are the gauge invariant

combinations to linear order (since the r.h.s. is quadratic in fluctuations). This follows from

our general discussion and we have also explicitly checked that the terms involving φ2
(s) in

the second order equations (with no gauge fixing imposed) are accounted for by the φ2
(s)

terms in the gauge invariant combinations. When s2 is the leading non-zero field (as it is

in the application discussed in this paper) the gauge invariant combinations take the form

ψ = ψ̂ + Aψsφŝ2φ2
(s) + Aψφφ(φ2

(s))
2 + AψsBDµŝ2B̂2

(s)µ + AψBBB̂µ2
(s)B̂

2
(s)µ. (4.9)

The coefficients Aψsφ, Aψφφ, AψsB and AψBB are given in table 1.

The field equations in (4.8) contain higher derivative terms on the r.h.s which can

however be removed by the following transformation [26]

Ψ = w(ψ)
(

ψ + Jψ22(ŝ
2)2 + Lψ22Dµŝ2Dµŝ2

)

. (4.10)

This transformation is the non-linear KK map to quadratic order in the fields. It maps

solutions of the 10d fields equations to solutions of the 5d field equations,

(¤ − m2
ψ)Ψ = λΨ22(S

2)2. (4.11)

– 14 –



J
H
E
P
0
5
(
2
0
0
6
)
0
5
7

The coefficients w(ψ), Jψ22 , Lψ22 and lΨ22 are given in table 1. We include on the r.h.s. only

the terms quadratic in S2 because these are the terms that are relevant for us. We note

however that all quadratic terms (and cubic scalar couplings [27]) have been determined

in the literature [26 – 28]. The results in table 1 are in agreement with the results in these

papers. The field equations can be integrated to a 5d action. and the constants w(ψ) have

been chosen such that the overall normalization agrees with the one in [8, 9]

S5d =
N2

2π2

∫

d5x
√

G

(

1

4
R +

1

2
Gµν∂µΨ∂νΨ + V (Ψ)

)

. (4.12)

Using the quadratic 10-dimensional supergravity action computed in [26, 29] one finds that

w(sI) =

√

8k(k − 1)(k + 2)z(k)

(k + 1)
, w(φ(t)) =

√

z(t)(k(t))

8
(4.13)

w(tI) =

√

8(k + 2)(k + 4)(k + 5)z(k)

(k + 3)
.

From table 1 we see that the only non-zero cubic term in the potential (that is also quadratic

in S2) is the cubic self coupling of S2 and its coefficient, −4/3
√

6, precisely agrees with

the corresponding coupling in 5d gauged supergravity (after matching sign conventions),

compare with (2.6) of [9].

It is important to note that the transformation (4.10) gives an explicit map between

solutions of the ten dimensional equation and solutions of the five dimensional equation and

vice versa, i.e. any solution of the five dimensional theory specified by the action (4.12) can

be uplifted to a ten dimensional solution. We emphasize that this map is valid irrespectively

of whether there is a consistent truncation since we keep all KK modes.

4.2.2 Tensor fields

Let us consider first the graviton. The quadratic correction to the gravitational equation

is obtained in appendix C:

(LE + 4)h0
µν =

1

12

(

−2

9
DµDρDσ ŝ2DνDρDσ ŝ2 − 16

3
(DµDνDρŝ

2Dρŝ2 + DµDρŝ
2DνD

ρŝ2)

+
364

9
Dµŝ2Dν ŝ

2 + go
µν

(

−8

9
DρDσ ŝ2DρDσ ŝ2 + 20Dρŝ

2Dρŝ
2 − 512

9
s2

))

, (4.14)

where LE is the linearized Einstein operator (C.20). This equation contains higher deriva-

tive interactions. Just as in the case of scalars one can remove them by considering the

following transformation

Gµν = h0
µν − 1

12

(

2

9
DµDρŝ2DνDρŝ

2 − 10

3
ŝ2DµDν ŝ2 +

(

10

9
(Dŝ2)2 − 32

9
(ŝ2)2

)

go
µν

)

,

(4.15)

as can be verified using (C.21). In terms of these variables the field equation becomes

Rµν [G] = 2

(

Tµν − 1

3
GµνT σ

σ

)

(4.16)
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where Rµν is the Ricci tensor of Gµν and

Tµν = ∂µS2∂νS
2 − Gµν

(

1

2
(∂S2)2 + V (S2)

)

. (4.17)

The equation (4.16) is indeed the field equation for Gµν derived from (4.12) and Tµν is the

corresponding matter stress energy tensor, where keeping with our approximations we only

retain terms quadratic in S2.

Now let us briefly describe the equations determining the KK gravitons. The traceless

part of the ten-dimensional field is given by

hI1
(µν) = φI1

(µν) + ψI1
(µν) +

1

(k + 1)(k + 3)
D(µDν)

(

2

5
πI1 − 12bI1

)

, (4.18)

where all fields are the appropriate combinations which are gauge invariant to quadratic

order. φI1
(µν) is transversal but ψI1

µν is not; indeed its defining equation is

DµDνψI1
µν = ZI1[s], (4.19)

where ZI1[s] is quadratic in the field s2 and is determined by the quadratic corrections to

the trace of the Einstein equation in the AdS directions. The equation for the transversal

field is then

(¤ + 2 − k(k + 4))φI1
(µν) = (2LE + 8 + k(k + 4))ψI1

(µν) + ZI1
(µν); (4.20)

= (2LE + 8 + k(k + 4))ψ
(t)I1
(µν) ,

where ZI1
(µν) is again quadratic in the field s2 and follows from the corrections to the (µν)

Einstein equation. ψ
(t)I1
(µν) is a transversal field which is quadratic in s2 and contains up

to six derivatives. We have verified that that the right hand side of the equation can be

written in the latter form; this follows from the detailed structure of ZI1
(µν) and ψI1

µν . It is

then immediately manifest that if one removes the higher derivative terms in the equation

by defining the five dimensional field as ΦI1
µν = φI1

(µν)−ψ
(t)I1
(µν) then this five dimensional field

satisfies the free field equation. This is in agreement with the result of [27] which found

the corresponding cubic coupling to vanish and implies that the five-dimensional field must

vanish to the order to which we work. As we discuss later, there is no physical content in

these fields (to the order to which we work), so we suppress explicit details of the (rather

complicated) KK reduction map.

5. Holographic 1-point functions

5.1 Generalities

The KK reduction discussed in the previous sections provides an explicit map between ten

dimensional solutions and five dimensional solutions as well as an associated five dimen-

sional action for gravity coupled to massless and massive KK modes. If one would consider

this problem in full generality the resulting action would involve an infinity of fields. For
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determining the holographic 1-point functions, however, we are only interested in the near

boundary behavior of the solutions (as is reviewed below). The near boundary expansion

effectively decouples all but a finite number of fields, the number of which depends on

the dimension of the operator whose 1-point function one is computing; the higher the

dimension, the greater the number of fields switched on.

Starting from a five dimensional action there is a well developed method for comput-

ing holographic 1-point functions, namely holographic renormalization [7, 9], see [17] for

a review. Recall that the basic formula expressing the AdS/CFT correspondence [2, 3]

relates the on-shell supergravity action with prescribed boundary conditions for all fields

to the generating functional of QFT correlators with the boundary fields playing the role

of sources,4

〈exp

(

−SQFT[G(0)] −
∫

d4x
√

G(0)O(x)Φ(0)(x)

)

= exp(−SSG[G(0),Φ(0)]) (5.1)

where G(0),Φ(0) are the fields parameterizing the boundary values of the bulk metric G

and of other bulk fields denoted collecting by Φ.

Naively, both sides of this relation diverge: the l.h.s. suffers from (the well known QFT)

UV divergences and the r.h.s. suffers from IR divergences (due to the infinite volume of the

spacetime). The divergences on the l.h.s may be dealt with by standard renormalization.

The infinities on the r.h.s. are dealt by holographic renormalization. Namely, one adds a

number of boundary counterterms that cancel all possible infinities that can arise in the

on-shell action. Holographic 1-point functions in the presence of sources are then obtained

by computing in full generality the first variation of the renormalized on-shell supergravity

action. This leads to relations between the 1-point functions and certain coefficients in the

near-boundary expansion of the bulk fields. This relation effectively replaces (5.1) since

higher point functions can be computing by further differentiating the 1-point functions

w.r.t. sources.

The near-boundary expansion of the bulk metric Gµν and scalar field Φk, where k is

the dimension of the dual operator, take the form

ds2
5 =

dz2

z2
+

1

z2

(

G(0)ij(x) + z2G(2)ij(x) + z4(G(4)ij(x) + log z2h(4)ij(x))
)

dxidxj ;

Φ2(x, z) = z2
(

log z2Φ2
(0)(x) + Φ̃2

(0)(x) + · · ·
)

;

Φk(x, z) = z(4−k)Φk
(0)(x) + · · · + zkΦk

(2k−4)(x) + · · · , k > 2. (5.2)

In these expressions the boundary fields G(0)ij ,Φ
2
(0),Φ

k
(0) parametrize the Dirichlet bound-

ary conditions and are also the field theory sources for the QFT stress energy tensor and

operators of dimension 2 and k, respectively. The near-boundary analysis determines all

coefficients in these expansions except the ones corresponding to the normalizable modes,

namely G(4)ij , Φ̃
2
(0),Φ

k
(2k−4). These are related to 1-point functions, as we review below.

4We work with Euclidean signature.
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5.1.1 Radial Hamiltonian formalism

The structure of the 1-point functions is most transparent in the radial Hamiltonian for-

malism [16, 10] (see [13 – 15] for earlier work). So before giving the explicit relation between

the 1-point functions and the coefficients of the asymptotic solutions we digress to explain

this relation. Let us define a radial canonical momentum for each field as

π =
∂L

∂Φ′ (5.3)

where L is the Lagrangian and prime denotes differential w.r.t. r = − log z. A covariant

version of the near boundary expansion in (5.2) is provided by the expansion of momenta

in eigenfunctions of the dilatation operator,

δD =

∫

z=ε
ddx

(

2γij
δ

δγij
+

∑

k

(k − 4)Φk δ

δΦk

)

= −z
∂

∂z
(1 + O(z)), (5.4)

where γij is the induced metric at the regulating surface z = ε. The last equality follows

from the leading asymptotics in (5.2). The near boundary expansion (5.2) now translates

into the following expansions

πi
j(x, ε) =

√
γ(π(0)

i
j + · · · + π(4)

i
j + π̃(4)

i
j log ε2 + · · ·);

πk(x, ε) =
√

g(πk
(4−k) + · · · + πk

(k) + π̃k
(k) log ε2 + · · ·), k ≥ 2 (5.5)

where πi
j and πk are the radial momenta for the bulk metric and the scalar field Φk,

respectively, and each term in this expansion transforms as indicated by its index

δDπ(n) = −nπ(n), (5.6)

except for π(4)
i
j , π

2
(2), π

k
(k) which transform inhomogeneously, with the inhomogeneous term

being equal to minus two times the coefficient of the logarithmic term, namely

δDπ(4)
i
j = −4π(4)

i
j − 2π̃(4)

i
j, δDπk

(k) = −kπk
(k) − 2π̃k

(k). (5.7)

One advantage of the momenta expansion (5.5) over the near boundary expansion of the

bulk fields (5.2) is that the momentum coefficients π(n)
i
j , π

k
(n) are covariant w.r.t. 4d diffeo-

morphisms that respect the regulating hypersurface z = ε whereas the coefficients in (5.2)

are not.

The coefficients in the momentum expansions can be obtained by inserting the expan-

sions in Hamilton’s equations. This leads to a number of equations obtained by collecting

all terms with the same weight. One then solves these equations iteratively and each of

them algebraically determines one of the coefficients in the expansion in terms of coeffi-

cients with lower weight. This determines all coefficients except π(4)
i
j and πk

(k), just as the

asymptotic analysis of the bulk equations determines all coefficients in (5.2) except for the

normalizable modes.

The renormalized 1-point functions are now simply given by the coefficient of the right

dimension

〈Tij〉 = π(4)ij

〈Ok〉 = πk
(k) (5.8)
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Following [16] one can show that there is a one to one correspondence between the mo-

mentum coefficients and the coefficients in (5.2). In particular,

π2
(2) =

N2

2π2

(

2φ̃(0)

)

, πk
(k) =

N2

2π2

(

(2k − 4)φ(2k−4) + lower
)

(5.9)

where the factor N2/2π2 is due to the overall factor in (4.12) and “lower” indicates terms

with index less than (2k − 4). These terms are local functions of the sources so they are

not important in computation of n-point functions for n > 1 (they lead to contact terms).

They are important in the computation of vevs in cases where the solution describes a

deformation flow [8, 20]. The specific example we discuss in this paper however is a vev

flow so we need not specify them.

5.2 5d supergravity fields

The part of the 5d action involving the metric and the field S2 is same as the sector of

gauged supergravity analyzed in [8, 9] (where S2 was called Φ) (see also [15, 10]). Thus,

the results for the 1-point functions carry over unchanged. The result for 〈O2〉 is as given

above

〈O2〉 =
N2

2π2

(

2S̃2
(0)

)

, (5.10)

and for the stress energy tensor

〈Tij〉 =
N2

2π2

(

G(4)ij +
1

3
S̃2

(0)G(0)ij +
1

8
[Tr G2

(2) − (Tr G(2))
2]G(0)ij (5.11)

− 1

2
(G2

(2))ij +
1

4
G(2)ij Tr G(2) +

3

2
h(4)ij +

(

2

3
S2

(0) − S̃2
(0)

)

S2
(0)G(0)ij .

)

.

5.3 KK modes

We now move to the one point functions of the other fields S4, S6, T 0, T 2, T 6,Φ2
(t). From

the last row of table 1 we see that the cubic couplings (relevant for us) vanish for all

of them so to the order to which we are working their field equations are just free field

equations. One would therefore naively conclude that the one-point functions are simply

given by (5.8)–(5.9). It turns out however that this is not true and there is an additional

subtlety.

The 1-point functions (5.8) were derived starting from a 5d action but in principle one

should really evaluate on-shell the 10d action. In the majority of cases this distinction

does not make any difference in practice, but there is a distinguished class of additional

finite (non-local) boundary terms that one obtains from reducing the 10d action. These

boundary terms are relevant for the computation of extremal correlators, namely n-point

functions of 1/2 BPS operators whose dimensions are {k1=k2 + · · ·+kn, k2, . . . , kn}. These

correlators are special in that they factorize into a product of 2-point functions.

The bulk couplings associated with all extremal 3-point functions were shown to be

zero in [26] (a result we reproduced here for the coupling (S2)2S4, see table 1). The 3-point

functions of the corresponding operators however are non-zero. It was shown in [22] in a

specific example involving the dilaton and the t-field that even though the bulk contribution
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to the three point function vanishes, there are additional boundary contributions which

lead to the correct 3-point function. By supersymmetry, the same should apply to all other

extremal 3-point functions. It was further conjectured that these results generalize to all

extremal n-point correlators. We refer to [30] for further discussion and references on this

issue.

These results should follow from holographic renormalization by starting from the 10d

action, requiring that the variational problem is well posed and then KK reducing the

action with boundary terms. Recall that in the 5d context all boundary terms, including

counterterms, are uniquely fixed by the requirement that the variational problem is well

posed with chosen boundary conditions [31]. We leave a detailed derivation for future work.

Here we will instead use known results in order to fix the form of the 1-point functions.

Covariance under 4d diffeomorphisms implies that the 1-point function should be a

function of the coefficients in the momentum expansion (5.5). Furthermore the dimensions

should match between the l.h.s. and the r.h.s. and the result for extremal n-point functions

should factorize into products of 2-point functions. This uniquely fixes the form of the

1-point functions. For concreteness we discuss the 1-point functions of O4 and O6 but the

generalization is obvious. Thus

〈O4〉 = π4
(4) + a422(π

2
(2))

2 (5.12)

〈O6〉 = π6
(6) + a642π

4
(4)π

2
(2) + a633(π

3
(3))

2 + a6222(π
2
(2))

3 (5.13)

where a422, a642, a633, a6222 are numerical constants that we show how to compute in the

next subsection. Let us explain the structure of these 1-point functions. The leading term

πk
(k) is the term discussed above in (5.8). Observe that the non-linear terms are possible

only when the weight of the operator in l.h.s. can be written as a sum of weights of other

operators, which is also the condition for extremal correlators. One could also consider

adding terms involving πk
n with n < k. Such terms can only possibly contribute to the

coincident limit of correlators (since πk
n with n < k is local in the sources) or to vevs of

solutions describing deformation flows, so they are not important for our analysis.

5.4 Extremal couplings

In this subsection we will compute the coefficients a422, a6222. The coefficients a633 and

a642 could be computed in similar way but we will not need their explicit values in this

paper. To obtain the coefficients a422, a6222 we compute the 3- and 4-point functions

starting from (5.12) and then fix the coefficients so that the numerical factors agree with

the the computation in free field theory. Note that the dependence on the coordinates is

guaranteed to be correct by the structure of (5.12) (as should become clear shortly).

We start with the computation of a422. By definition

〈Ok(x)Ok(y)〉 = − δ〈Ok(x)〉
δφk

(0)(y)

∣

∣

∣

∣

∣

φk
(0)

=0

= −
δπk

(k)(x)

δφk
(0)(y)

∣

∣

∣

∣

∣

φk
(0)

=0

(5.14)

〈O4(x1)O2(x2)O2(x3)〉 =
δ2〈O4(x1)〉

δφ2
(0)(x2)δφ2

(0)(x3)

∣

∣

∣

∣

∣

φ2
(0)

=0

(5.15)
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=

(

δ2π4
(4)(x1)

δφ2
(0)(x2)δφ2

(0)(x3)
+ 2a422

(

δπ2
(2)(x1)

δφ2
(0)(x2)

)(

δπ2
(2)(x1)

δφ2
(0)(x3)

))∣

∣

∣

∣

∣

φ2
(0)

=0

To evaluate these expressions we need to know πk
(k) to linear order in φk

(0) and π4
(4) to

quadratic order in φ2
(0). Recall that πk

(k) is proportional to the vev part of the solution

(see (5.9)), so in order to compute 2- and 3-point functions we need to solve bulk equations

expanded around the background solution (which in the current context is just AdS) to

linear and quadratic order, respectively, and then extract the coefficient of order zk. For

extremal couplings the cubic coupling to S2 is zero, λ422 = 0, so the bulk equation for S4

continues to be ¤S4 = 0 and the solution does not acquire dependence on φ2
(0) so the second

variation of π
(4)
4 w.r.t. φ2

(0) is zero.5 Therefore only the last term in (5.15) contributes and

using (5.14) we see that the extremal 3-point function is a product of 2-point functions

〈O4(x1)O2(x2)O2(x3)〉 = 2a422〈O2(x1)O2(x2)〉〈O2(x1)O2(x3)〉 (5.16)

Since this 3-point function does not renormalize one can compute it via free fields, which

allows us to fix the proportionality constant a422.

In the large N limit (i.e. dropping non-planar contributions) the free field computations

for the 2- and (extremal) 3-point functions yield

〈

Ok(x)Ok(y)
〉

= N 2
k λk k

(2π)2k |x − y|2k
, (5.17)

〈

Ok1(x1)Ok2(x2)Ok3(x3)
〉

= Nk1Nk2Nk3

λk1

N

k1k2k3〈Ck1Ck2Ck3〉
(2π)2k1 |x1 − x2|2k2 |x1 − x3|2k3

, (5.18)

where the operators are defined in (2.3) and in the extremal 3-point function k1 = k2 + k3.

The normalization factors Nk are chosen such that the 2-point function of (5.17) agrees

with the supergravity results; in particular given that for k 6= 2 the supergravity result is

〈

OI1(x)OI2(y)
〉

=
N2

2π2

(

Γ(k + 1)

π2Γ(k − 2)

(2k − 4)

k

δI1I2

|x − y|2k

)

, (5.19)

whilst for k = 2 the result is

〈

O2(x)O2(y)
〉

=
N2

2π2

(

2δI1I2

π2 |x − y|4
)

. (5.20)

The normalizations are thus

NI1 =
N

λ
1
2
k

2kπk−2

k

√

Γ(k + 1)(2k − 4)

2Γ(k − 2)
; k 6= 2, (5.21)

N2 = 2
√

2
N

λ
.

5In the non-extremal case, the bulk equation reads ¤Sk = λklmSlSm and the r.h.s. induces a correction

to Sk proportional to zk(φl
(0)φ

m
(0)) so the second variation of π

(k)
k w.r.t. φl

(0) and φm
(0) is non-zero yielding

the 3-point function, see [17] for a detailed discussion.
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Inserting (5.17) in (5.16) and comparing with (5.18) leads to

a422 =
2N4

N 2
2 N

〈C4C2C2〉 =
3N4√
5N 2

2 N
, (5.22)

where in the last equality we have used the explicit value of the triple overlap 〈C4C2C2〉.
This can be obtained from the formulae (B.13)–(B.14) by computing the overlap of Y (4,0)

and (Y (2,0))2 using the explicit expressions (B.9).

The computation of the coupling a6222 is analogous. The bulk quartic coupling was

shown to be zero in [32] and thus the only contribution to the extremal 4-point function

comes from the last term in (5.13)

〈O6(x1)O2(x2)O2(x3)O2(x4)〉 = 6a64222

4
∏

k=2

〈O2(x1)O2(xk)〉 (5.23)

The free field result for extremal 4-point functions (in the planar limit) is

〈Ok1(x1)Ok2(x2)Ok3(x3)Ok4(x4)〉 =

=

(

∏

i

Ni

)

λk1

N

k1k2k3k4〈Ck1Ck2Ck3Ck4〉
(2π)2k1 |x1 − x2|2k2 |x1 − x3|2k3 |x1 − x4|2k4

, (5.24)

where k1 = k2 + k3 + k4, which fixes the proportionality constant to be

a6222 =
N6

N 3
2 N

〈C4C2C2C2〉 =
N6

N 3
2 N

3
√

3

5
√

7
(5.25)

where 〈C4C2C2C2〉 was computed using the following integral formula valid for extremal

overlaps
∫

Y I1Y I2Y I3Y I4 =
π3

(k1 + 1)(k1 + 2)2k1−1
〈CI1CI2CI3CI3〉, (5.26)

along with the explicit forms of the spherical harmonics.

5.4.1 Summary

To summarize we have shown that 1-point functions of the operators O4,O6 are6

〈O4〉 = π4
(4) +

3N4√
5N 2

2 N
(π2

(2))
2 (5.27)

〈O6〉 = π6
(6) + a642π

4
(4)π

2
(2) + a633(π

3
(3))

2 +
N6

N 3
2 N

3
√

3

5
√

7
(π2

(2))
3

Notice that although we have used the 3- and 4-point functions on AdS to fix the couplings

a422 and a6222, these 1-point functions hold for any solution of the bulk field equations.

Notice also that these 1-point functions are compatible with the (conjectured) structure

of near-extremal correlators. Recall that near-extremal correlators have weights k1 =

6The non-linear terms in these relations may have the interpretation as operator mixing between single

trace and multi-trace operators.
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k2 + · · · kn − 2m with 0 ≤ m ≤ n − 2. These correlators are conjectured (and checked

through order g2) to be sums of terms each of which factors into products of lower-point

correlators [33]. When m = 1 the correlator is called next-to-extremal and factorizes into

a 3-point function and (n−2) 2-point functions. One can easily check that this structure

emerges from (5.27) after using the fact that the bulk coupling vanishes. (To be more

precise, the bulk coupling is known to vanish up to quartic order and is conjectured to

vanish to all orders). For example the next-to-extremal correlator 〈O4O2O2O2〉 is given by

〈O4(x1)O2(x2)O2(x3)O2(x4)〉 = 2a422

(

δπ2
(2)(x1)

δφ2
(0)(x2)δφ

2
(0)(x3)

)(

δπ2
(2)(x1)

δφ2
(0)(x4)

)

+ · · ·

= 2a422

(

〈O4(x1)O2(x2)O2(x3)〉〈O2(x1)O2(x4)〉 + · · ·
)

(5.28)

where the dots indicate permutation in x2, x3, x4.

6. Coulomb branch solution

6.1 Continuous distributions of D3 branes

It is intuitively clear that the Coulomb branch of N = 4 SYM should be described by

multi-center D3 brane solutions. Solutions describing N separated D3 branes solve the field

equations that follow from the bulk supergravity action coupled to the worldvolume action

of N (separated) D3-branes. It will be important for us to keep track of all normalizations

factors so we set the stage by first reviewing some standard material. The bulk action is

normalized as

S =
1

2κ2

∫

d10x
√−g(R + · · ·), 2κ2 = (2π)7(α′)4g2

s , (6.1)

and the worldvolume theory is given by

Ssource =

N
∑

a=1

∫

d10x

∫

d4σaLDBI(σ
a)δ(xM − XM (σa)), (6.2)

where the Lagrangian for each D-brane is normalized as

LDBI(σ
a) = T3(

√

det(γ + 2πα′F ) + · · ·), T3 =
1

(2π)3(α′)2gs
, (6.3)

where γij = ∂iX
M∂jX

NgMN is the induced metric and derivatives are with respect to the

worldvolume coordinates σi. The D3-brane solutions take the form

ds2 = H(x⊥)−1/2dx2
|| + H(x⊥)1/2dx2

⊥ (6.4)

F =
1

4
(dH−1 ∧ ω|| − ∗⊥d⊥H) (6.5)

where ω|| is the volume form in the worldvolume directions, ∗⊥ and d⊥ refer to the Hodge

star and exterior derivative in the flat overall transverse directions and H is a harmonic

function. We are interested in the case of a uniform distribution of N D3-branes on a two
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dimensional disc of radius l. Approximating the distribution as a continuum distribution

with density

ρ(r) =
N

πl2
θ(l2 − r2), (6.6)

where r is the radial coordinate in the plane of the distribution, the solution for the

harmonic function is (see for example [34, 35])

H =
L4

πl2

∫

r′≤l
d2r′

1

(~x⊥ − ~r′)4
= − L4

2l2y2

(

r2 − l2 + y2

√

(r2 + l2 + y2)2 − 4r2l2
− 1

)

(6.7)

where L4 = 4πgsN(α′)2, ~y are coordinates in the four dimensional space transverse to the

distribution of the D3 branes and ~r lies in the plane of the distribution.

A change of coordinates

y = r̄ sin θ̄, r =
√

l2 + r̄2 cos θ̄ (6.8)

brings the solution into the form

ds2 =
r̄2ζ

L2

(

dx2
|| +

L4dr̄2

r̄4λ6

)

+
L2

ζ

(

ζ2dθ̄2 + sin2 θ̄dΩ2 + λ6 cos2 θ̄dφ2
)

(6.9)

F = L−4

(

r̄3(1 +
l2

2r̄2
sin2 θ̄)dr̄ +

1

4
l2r̄2 sin 2θ̄dθ̄

)

∧ ω||

+L4 sin3 θ̄ cos θ̄
1

ζ4

(

λ6(1 +
l2

2r̄2
sin2 θ̄)dθ̄ − l2

4r̄3
sin 2θ̄dr̄

)

∧ dΩ3 ∧ dφ

where

ζ2 = 1 +
l2

r̄2
sin2 θ̄, λ6 = 1 +

l2

r̄2
(6.10)

Now note that if we rescale the four dimensional coordinates as

x|| → L2x|| (6.11)

the metric has an overall L2 factor whilst the five form has an overall L4 factor. These

factors combined with the prefactor of (6.1) result in the overall normalization factor of

the five dimensional action (4.12); we can therefore suppress the L prefactors in the rest

of this section.

6.2 Asymptotic expansion

We now wish to expand the metric near the boundary. A systematic way to do this is

to use Gaussian normal coordinates centered at the boundary of AdS5 and then expand

all fields using the radial coordinate as a small parameter. This radial axial gauge can be

reached by the charge of coordinates

l

r̄
= z(1 + a1z

2 + a2z
4 + O[z]6)

θ̄ = θ + b1z
2 + b2z

4 + O[z]6 (6.12)
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where

a1 =
1

23
(2 − sin2 θ), a2 =

1

28
cos2 θ(5 + 11 cos 2θ)

b1 =
1

23
cos θ sin θ, b2 =

5

29
(− sin 2θ + sin 4θ) (6.13)

The metric then takes the form

ds2 =
dz2

z2
+

l2

z2
(1 + α1z

2 + α2z
4)dx2

|| (6.14)

+dθ2(1 + β1z
2 + β2z

4) + sin2 θdΩ2
3(1 + γ1z

2 + γ2z
4) + cos2 θdφ2(1 + δ1z

2 + δ2z
4)

where the coefficients α1, α2 etc. depend on the angular coordinate θ. By scaling

z → zl (6.15)

the leading metric becomes a unit radius AdS5 × S5 and factors of l appear in the fluc-

tuations. These factors can be easily reinstated in the final formulae so for simplicity we

set l = 1 for now. Using the explicit form of spherical harmonics in (B.9) and (B.18) the

deviation of the metric from AdS5 × S5 can be rewritten as in (3.4) with the following

coefficients (valid up to terms of order z4),

h̃0
ij(z) =

1

32
z2δij , h̃2

ij(z) =
√

12

(

−1

4
+

23

320
z2

)

δij , h̃4
ij(z) = −3

√
5

20
z2δij ,

φ̂2
(t)(z) =

3

160
z4, φ2

(s)(z) =
√

12

(

1

8
z2 − 1

256
z4

)

, φ4
(s)(z) =

√
5

32
z4 (6.16)

π̃0(z) =
1

8
z4, π̃2(z) =

√
12

(

z2 − 17

64
z4

)

, π̃4(z) =
3
√

5

2
z4.

Similarly, from the expansion of the five form we obtain

b2
(s) = −

√
3

8
z2 +

31
√

3

1280
z4 (6.17)

b4
(s) = −39

√
5

640
z4

There are several comments in order here. Firstly, the solution is not in the de Donder

gauge, as one can see from the fact that the scalar fields φ2
(s) and φ4

(s) are non-zero. Sec-

ondly, the expansion contains many more non-zero fields that one would naively expect. In

particular, there are non-zero KK gravitons, h̃2
ij and h̃4

ij (which are dual to the operators

of the schematic form, Tr F+F−Xk for k = 2, 4 (see table 7 of [30])), scalar field φ2
(t) (that

couples to a tensor harmonic and is dual to the operator Trλλλ̄λ̄X2) scalar fields t0, t2, t4

(that are dual to Tr F 2
+F 2

−Xk for k = 0, 2, 4) and scalar fields s2, s4 (that are dual to the

operators Tr Xk, k = 2, 4). However, we know that in the CB flow only the operators

Tr Xk get a vev. So what is the meaning of the values of the additional fields?

To answer this question we should apply our map to obtain the gauge invariant five

dimensional fields. As a first step we need to construct gauge invariant combinations.
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Using (3.19)–(3.20)–(3.22) and (3.24) and the definition of tk, sk we get

t0 = − 1

128
z4, t2 = −

√
3

160
z4, t4 = −3

√
5

160
z4, (6.18)

s2 =

√
3

4
z2 −

√
3

160
z4, s4 =

37
√

5

160
z4, φ2

(t) = 0. (6.19)

The five-dimensional fields are obtained from these by the KK reduction formula (4.10)

yielding

T 0 = T 2 = T 4 = Φ2
(t) = 0, S2 =

1√
6

(

z2 − 1

6
z4

)

, S4 = 0. (6.20)

We thus see that all additional scalar fields are equal to zero! The same is also true for the

KK gravitons but we do not give the details here. We would like to emphasize, however,

that a non-zero answer for these fields would not be a problem for the duality. The only

cases where it would problematic is if the non-zero values correspond to a source or a vev.

Note that all additional fields correspond to irrelevant operators and a non-zero source

would not be consistent with AdS asymptotics. Furthermore, the corresponding vev part

would appear at much higher power of z. To understand the (possibly non-zero) values

note that the 5d equations are schematically of the form

(¤ + m2
Φ)Φ = λΦ22(S

2)2 + · · · (6.21)

where Φ denotes collectively the fields other than s2, s4 and the metric that are turned on.

Any non-zero value for these fields would simply be induced by interaction terms — such

non-zero fields just reflect the non-linear structure of gravity. In our case, it turns out that

the couplings λΦ22 are zero, so the fields Φ had to be zero to this order.

The fields that are important to understand at each order zk are the ones which

correspond to operators whose vevs can receive a contribution from the asymptotics at this

order. In our case, these are the fields S2, S4 and the metric Gµν . The solution we discuss

can be reduced to five dimensions using a “consistent truncation ansatz” (see [34, 36]).

The reduced model involves the metric and S2. The expression for S2 in (6.20) exactly

agrees with the asymptotic expansion of the 5d solution, compare with (5.2) of [9] (and use

Φ = −S2). We will return to the metric momentarily.

The expression for S4 in (6.20) is new information. The fact that it is zero comes out

of non-trivial cancellations and at first sight is surprising since the vev of the dual operator

is non-zero. From table 1 we see that the coupling of S4 to (S2)2 is zero; this is an example

of an extremal coupling

¤S4 = 0. (6.22)

In this case however the vanishing of the coupling only explains the absence of logarithmic

terms in the asymptotic expansion of S4. Logarithmic terms in the asymptotic expansion

are related to conformal anomalies. Such conformal anomalies due to 3-point functions

are possible when the couplings are extremal, see section 2 of [37]. They are however

proportional to the sources so they evaluate to zero on the Coulomb branch, in agreement
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with the absence of logarithmic terms in the asymptotic expansion. In other words, the

vanishing of the extremal couplings is required by the AdS/CFT correspondence and the

structure of the conformal anomaly. Equation (6.22) allows for a homogeneous solution

that is proportional to z4 and one might have anticipated that the homogeneous term

would be non-zero, since the vev of the dual operator is non-zero. We will resolve this issue

in the next subsection.

We now return to the spacetime metric. We see from (6.16) that the metric is corrected

at the normalizable mode order. More precisely the combination that diagonalizes the field

equations to linear order is h′
µν = (h̃0

µν + 1
3 π̃0go

µν) and in our explicit solution this is given by

h′
zz =

1

24
z2, h′

ij =
7

96
z2δij . (6.23)

Naively this would imply that the dual stress energy tensor is non-zero. The solution,

however, is supersymmetric so the vev of the stress energy tensor must be equal to zero.

(We discussed this point earlier in the introduction.) As mentioned above the 10d solution

can be reduced to five dimensions using a consistent truncation ansatz. The asymptotics

of the 5d metric were given in the introduction in (1.3). As mentioned there, despite the

non-zero coefficient of the ẑ4 term, the vev of Tij is zero because of additional contributions

to the 1-point function. This does not immediately resolve the issue however because the

metric in (6.23) does not agree with the metric in (1.3) (when both written in the same

gauge)!

The issue here is that h′
µν is not the correct 5d metric. Firstly, h′

µν does not transform

correctly, i.e. as a five-dimensional metric. As derived in section 3.2.2 the combination

which transforms properly is h0
µν in (3.30). Evaluating this formula for the case at hand

gives

h0
zz = −11

48
z2, h0

ij =
19

192
z2δij. (6.24)

The five-dimensional metric is now obtained by using the non-linear KK map in (4.15).

The resulting five-dimensional metric (including the background term) is given by

ds2 =

(

1 − 13

144
z4

)

dz2

z2
+

1

z2

(

1 − 19

576
z4

)

dx2
||. (6.25)

This metric is not in the same gauge as the metric in (1.3). To correct for that we change

coordinates as z = ẑ(1 + 13
1152 ẑ4) and the metric becomes

ds2 =
dẑ2

ẑ2
+

1

ẑ2

(

1 − 1

18
ẑ4

)

dx2
||, (6.26)

which precisely agrees with (1.3) (after reinstating the factors of l)! Note that this coordi-

nate change does not affect any other fields to the order we work to.

6.3 Comparison with field theory

Given the asymptotic expansions of the five dimensional fields we can now read off the

vevs for the corresponding corresponding operators. These must agree with the field theory
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results discussed in section 2 because, as we explained there, N = 4 supersymmetry forbids

any quantum corrections, so this computation is a test of the gravity/gauge theory duality.

Using the formula (5.10) we see that the vev of the ∆ = 2 operator is given in terms

of the normalizable mode S̃2
0(x) of the supergravity field S2 as

〈

O2
〉

SUGRA
=

N2

2π2
(2S̃2

0(x)) =
N2

√
6π2

l2, (6.27)

where we use the explicit result for our solution S̃2
0 = 1/

√
6 and we reinstated the factors

of l. This 1-point function was previously derived in [8]. To compare with the field theory

expression (set n = 1 in (2.11)),

〈

O2
〉

QFT
=

N2a
2

2
√

3
N (6.28)

we need to normalize operators and the action in the same way. The normalization of the

operators was given in (5.21). Expanding the source action (6.2) to leading order in α′ and

taking into account the rescaling of the R3,1 coordinates in (6.11) the kinetic term for the

scalar fields is normalized as

T3L
4

∫

d4σ(
1

2
(∂X)2) =

(

λ

2π2

)

1

gs

∫

d4σ

(

1

2
(∂X)2

)

. (6.29)

On the other hand, the field theory computation was done with canonically normalized

scalars. It follows that the radius a of the distribution in field theory (with canonically

normalized scalars) is related to the radius l of distribution of D3 branes by

a =

√

λ

2π2
l. (6.30)

Using the normalization N2 in (5.21) and (6.30) we find precise agreement between the

supergravity and field theory computations!

Next consider the ∆ = 4 operator. Given the result of the previous subsection that the

normalizable mode of the corresponding supergravity field vanishes, the vev (5.27) receives

contributions only from the term quadratic in π2
(2):

〈

O4
〉

=
3N4√
5N 2

2 N
(〈O2〉)2 =

N4a
4

22
√

5
N (6.31)

where we used (5.8) and (6.28). This is precisely the correct field theory vev!

Now let us consider the ∆ = 6 operator. The vanishing of π4
(4) and π3

(3) means that in

this case the formula (5.27) reduces to just

〈

O6
〉

= π6
(6) +

N6

N 3
2 N

3
√

3

5
√

7
(〈O2〉)3 (6.32)

The latter of these terms evaluates to

1

5

(N6a
6

23
√

7
N

)

=
1

5

〈

O6
〉

QFT
(6.33)
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Given that in the ∆ = 4 case, there was no contribution to the vev from the bulk super-

gravity field one might have wondered whether the same was true in the ∆ = 6 case, and

indicative of a more general result. However, (6.33) only accounts for one fifth of the field

theory result, and there must therefore be an additional contribution from the supergravity

field dual to O6. To verify this one would have to extend our supergravity computations

to one order higher, including quartic couplings, to extract the normalizable mode of the

supergravity field S6. Note that the structure of the 1-point functions is such that the

terms non-linear in momenta always give a contribution that is proportional to the QFT

vev. It is a curious fact that up to at least O10 (which is as far as we explicitly checked) the

proportionality coefficient is a rational number, despite the fact that intermediate formulae

contain square roots.

The vev of the stress energy tensor was already computed in [8] (using (5.11)) and,

as noted earlier, was found to be zero, in agreement with the fact that the solution is

supersymmetric. We have thus succeeded in showing that the vevs of all operators up to

dimension ∆ = 4 are correctly reproduced by supergravity!

7. Conclusions

We have developed in this paper a systematic method for constructing the holographic

map between the asymptotics of a ten dimensional solution and the 1-point functions of

the dual QFT. Our main goal was to develop an unambiguous method that can, at least

in principle, always be carried out. The main elements entering our construction are (i)

the development of a gauge invariant version of KK reduction; (ii) construction of the KK

map to non-linear order and (iii) application of holographic renormalization, including a

proper treatment of extremal couplings.

One-point functions can be derived rigorously starting from a 5d action via holographic

renormalization. Our strategy for obtaining the 1-point functions dual to general KK fields

was thus to reduce the field equations over the compact manifold and then use holographic

renormalization. Recall that holographic renormalization relates the vevs to coefficients in

the asymptotic expansion of the 5d solution. So to compute the vevs starting from a 10d

solution one has to understand quantitatively how the solution is reduced to five dimensions

at the non-linear level. The point is that non-linear terms can give a contribution at

exactly the same order (in a radial expansion) as linear terms. However, 1-point functions

of operators of a given dimension can only receive contribution from non-linear terms

involving fields dual to operators of lower dimension.

The KK reduction map is constructed by first computing the fluctuation equations

around AdS5 × S5 to a certain order in the fluctuation fields and then finding the field

transformation that removes the higher derivative terms from these equations. This field

transformation is the KK reduction map (to this order) and the resulting field equations

are the 5d field equations.

We would like to contrast our procedure with the procedure of “consistent truncua-

tion”. In the latter one only keeps certain (typically low lying) modes in the KK reduction

and then has to prove that the dynamics of these modes decouple from the rest. The exis-
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tence of such a truncation is highly non-trivial and only holds for special compactifications.

In the AdS/CFT correspondence consistent truncation maps to the closure of a subset of

operators of the CFT under OPEs. In our discussion we keep all KK modes, so there is

never an issue of consistency. We are however interested only in the asymptotic expansion

of the resulting field equations. This effectively decouples all but a finite number of fields

at each order in the expansion. In particular, for computing the vev of an operator of a

given dimension only the fields dual to operators of the same or lower dimensions need to

be kept.

The need for a gauge invariant KK reduction stems from the fact that the KK reduction

is most efficiently done in a specific gauge, the de Donder gauge, but in general explicit

solutions will not be - and many known interesting solutions are not - in this gauge.

Reaching this gauge would require finding a transformation that in general is not easy

to obtain (at the non-linear level). Thus instead of gauge fixing the diffeomorphisms we

construct gauge invariant variables. This allows us to immediately lift results derived in

one gauge to another gauge: one can first obtain the KK map in the de Donder gauge

and then relax the gauge condition by simply replacing all fields by their gauge invariant

generalization. The construction of the gauge invariant variables can be done systematically

in the number of fields and we have done so up to second order in the fields.

A final subtlety involves extremal couplings. Extremal correlators involve operators

with the dimension of one of them equal to the sum of the dimensions of all the others.

Such correlators are non-zero and are believed not to renormalize. A naive computation in

supergravity however would give zero because the corresponding bulk coupling vanishes.

It was argued in [22] that precisely in these cases there are additional boundary terms,

originating from the higher derivative terms in the fluctuation equations, that one should

take into account when evaluating the on-shell action and these yield the correct answer.

In holographic renormalization one effectively replaces the on-shell action by renormalized

1-point functions in the presence of sources. These 1-point functions are valid for any

solution of the field equations and higher n-point functions can be computed by further

differentiating w.r.t. sources. Additional boundary terms in the 5d action, beyond the ones

implied by the bulk 5d action via the variational problem, would manifest as additional

contributions to the renormalized 1-point functions. The form of the additional terms is

uniquely fixed by general principles. This leaves a few numerical coefficients to be deter-

mined and these can be easily computed by comparing the extremal correlators computed

in weakly coupled N = 4 SYM and in supergravity.

Combining these elements one obtains a well-defined holographic map. In our dis-

cussion we focused on solutions of IIB supergravity that involve only the metric and the

self-dual five-form and asymptote to AdS5 × S5 but the discussion readily generalizes to

include all other fields or more generally to any theory with solutions that asymptote to

AdSm × X, for some m and any compact manifold X.

Let us summarize the steps involved in the construction of the map:

1. Expand the solution (using a radial coordinate z as a small parameter) up to certain

order and write the deviation from AdSm × X in terms of harmonics of X.

– 30 –



J
H
E
P
0
5
(
2
0
0
6
)
0
5
7

2. If the solution is not in the de Donder gauge, combine the fluctuations in gauge

invariant variables.

3. Use the KK map to obtain the asymptotic expansion of the corresponding lower

dimensional fields.

4. Insert the coefficients of the asymptotic expansion in the renormalized 1-point func-

tions to obtain the vevs.

The asymptotic expansion of the 10d solution in general will contain non-zero terms for

many coefficients. The only ones that carry physical information are the ones that have the

correct leading radial behavior to correspond to normalizable or non-normalizable modes.

The former give a contribution to the vev of the dual operator and the latter to the

coefficient of the deformation of the QFT Lagrangian by the dual operator. We should

note however that the remaining coefficients will generically contribute to vevs of higher

dimension operators via non-linear contributions to the holographic map.

The higher the dimension of the dual operator, the higher the order needed in the

gauge invariant variables and the KK map. So although this work solves the problem of

computing the vevs in principle, in practice the method becomes cumbersome to carry

out when sufficiently high dimension operators are involved (but since the procedure is

algorithmic one could in principle computerize it). In this paper we explicitly worked out

the map to the first non-trivial order. This is sufficient to compute vevs of operators up

to dimension 4 and thus covers all relevant and marginal operators in four dimensions. As

noted in the introduction, more efficient methods may be available when the solution has

special properties. In this paper we mainly aimed at settling the issue of principle in full

generality.

To illustrate the general procedure we analyzed a solution that corresponds to a partic-

ular point on the Coulomb branch of N = 4 SYM. This is an interesting example because

the vevs are protected by supersymmetry and therefore the supergravity dual must repro-

duce them exactly. The vevs corresponding to fields in gauged supergravity were previously

computed in [8, 9]. Here we computed in addition the vev of the operator of dimension

4 and exact agreement with the quantum field theory values was found! This constitutes

the first non-trivial quantitative test of gravity/gauge theory duality away from the fixed

point that involves a vev of an operator dual to a KK field.

In the discussion so far we focused on how to compute vevs starting from a given

10d solution. The (inverse of the) holographic map can be used to see how spacetime is

reconstructed from QFT data. In particular, we see from our discussion that the vevs of

operators dual to KK modes provide a harmonic resolution of the compact space. From a

more general viewpoint, notice that in the radial Hamiltonian formulation of holographic

renormalization the vevs are associated with the radial canonical momenta conjugate to

the sources. The holographic map therefore maps the field theory data to the phase space

of the gravitational theory. It follows that these data are sufficient to uniquely determine

the bulk solution, even though the explicit formulae only provide an asymptotic solution

up to a certain order.
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One could thus “holographically engineer” duals of interesting quantum field theories

by starting from the field theory vevs and using the holographic map. For this procedure

to yield a smooth geometry, the vevs should clearly be large compared to the string scale.

Even if this condition is satisfied, there is still no guarantee that a smooth geometry would

emerge. For instance, it is well known that a necessary condition for a smooth supergravity

dual is that the conformal anomaly of the theory at the UV fixed point should satisfy

c = a in the large N and λ limit [11]. Let us also note that even if a given theory has a

smooth dual geometry, in practice it may not be easy to sum the asymptotic solution into

this smooth solution. New tools that capture global issues of the correspondence may be

needed to properly analyze this problem. It would be very interesting to explore this line

of thought further.

In many cases it is clear from the construction of the supergravity solution (with AdS

asymptotics) what the corresponding gauge theory dual is. For instance this is the case

if the solution is obtained via a near-horizon limit from another solution. Yet there are

many other cases where solutions with AdS asymptotics have been obtained by directly

solving the supergravity equations and there is no physical argument that would identify

the dual theory. The work presented here should be useful both in verifying the gauge

theory duals in cases where a proposed identification is available and also for extracting

the gauge theory dual in other cases.
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A. Harmonic expansion of the antisymmetric tensor

We expand the antisymmetric tensor as

aµνρσ(x, y) =
∑

b̃I1
µνρσ(x)Y I1(y)

aµνρa(x, y) =
∑

(b̃I5
(v)µνρ(x)Y I5

a (y) + b̃I
(s)µνρ(x)DaY

I1(y))

aµνab(x, y) =
∑

(b̃I10
(t)µν (x)Y I10

[ab] (y) + b̃I5
(v)µν(x)D[aY

I5
b] (y))

aµabc(x, y) =
∑

(b̃I5
(v)µ(x)εabc

deDdY
I
e (y) + b̃I10

(t)µ(x)D[aY
I10
bc] (y))

aabcd(x, y) =
∑

(bI1
(s)(x)εabcd

eDeY
I(y) + bI5

(v)(x)εabcd
eY I5

e (y)) (A.1)

Gauge transformations act on the 4-form as follows

δaMNPQ = 4D[McNPQ] (A.2)

The antisymmetric tensor parameter has the following expansion

cµνρ(x, y) =
∑

cI1
µνρ(x)Y I1(y) (A.3)
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cµνa(x, y) =
∑

(cI5
(v)µν (x)Y I5

a (y) + cI1
(s)µν(x)DaY

I1(y))

cµab(x, y) =
∑

(cI10
(t)µ(x)Y I10

[ab] (y) + cI5
(v)µ(x)D[aY

I5
b] (y))

cabc(x, y) =
∑

(cI5
(v)(x)εabc

deDdY
I5
e (y) + cI10

(t) (x)D[aY
I10
bc] (y)) (A.4)

This implies the following gauge transformations for the fields,

δb̃I1
µνρσ = 4D[µcI1

νρσ], δb̃I5
(v)µνρ = 3D[µcI5

(v)νρ], δb̃I1
(s)µνρ = −cI1

µνρ

δb̃I10
(t)µν = 2D[µcI10

(t)ν], δb̃I5
(v)µν = 2D[µc̃I5

(v)ν] + cI5
(v)µν (A.5)

δb̃I5
(v)µ = DµcI5

(v), δb̃I10
(t)µ = DµcI10

(t) − 3cI10
(t)µ, δbI5

(v) = −(ΛI5 − 4)cI5
(v)

It follows that the following combinations are gauge invariant,

bI1
µνρσ = b̃I1

µνρσ + 4D[µb̃I1
(s)νρσ] (A.6)

bI5
(v)µνρ = b̃I5

(v)µνρ −
3

2
D[µb̃I5

(v)νρ]

bI10
(t)µν = b̃I10

(t)µν +
2

3
D[µb̃I10

(t)ν]

bI5
(v)µ = b̃I5

(v)µ +
1

(ΛI5 − 4)
DµbI5

(v)

Indeed the field strength

fMNPSR = 5D[MaNPRS] (A.7)

can be expressed in terms of these modes.

The gauge used in [21],

DaaaMNP = 0 (A.8)

amounts to setting to zero

b̃I1
(s)µνρ = b̃I5

(v)µν = b̃I10
(t)µ = bI5

(v) = 0. (A.9)

Our normalizations are such that the gauge invariant variables evaluated in this gauge

agree with the parametrization in [21].

B. Spherical harmonics

The defining equations for the spherical harmonics are

¤yY
I1 = ΛI1Y I1, ΛI1 = −k(k + 4), k = 0, 1, 2, . . . (B.1)

¤yY
I5
a = ΛI5Y I5

a , ΛI5 = −(k2 + 4k − 1), k = 1, 2, . . .

¤yY
I14
(ab) = ΛI14Y I14

(ab), ΛI14 = −(k2 + 4k − 2), k = 2, 3, . . .

¤yY
I10
[ab] ≡ ΛI10Y I10

[ab] , ΛI10 = −(k2 + 4k − 2), k = 1, 2, . . .

DaY I5
a = DaY I14

(ab) = DaY I10
[ab] = 0.
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Useful identities for the scalar harmonics include

DaD(aDb)Y
I = 4

(

1 +
ΛI

5

)

DaY
I ; (B.2)

¤yD(aDb)Y
I = (10 + ΛI)D(aDb)Y

I ;

¤yDaY
I = (ΛI + 4)DaY

I .

B.1 Spherical harmonics with SO(4) symmetry

We introduce the following coordinates on S5

ds2 = dθ2 + sin2 θdΩ2
3 + cos2 θdφ2. (B.3)

The differential equation (B.1) for the scalar harmonics is separable. Imposing SO(4)

symmetry implies that the spherical harmonics depend only on θ and φ. The general

solution can then be expressed in terms of a hypergeometric functions,

Y (k,m)(θ, φ) = c(n,m)y
k
m(θ)eimφ (B.4)

where c(n,m) is a normalization constant and the function yk
m(θ) is given by

yk
m(x) = x|m|

1F2

(

−1

2
(k − |m|), 2 +

1

2
(k + |m|), 1 + |m|;x2

)

(B.5)

with x = cos θ (there are also a second solution with leading behavior x−|m| but this

solution does not reduces to a finite polynomial for any choice of the quantum numbers).

The hypergeometric function reduces to a finite polynomial when either the first or second

argument is zero or a negative integer. This leads to the following cases

(k = 2l, m = 2n), (k = 2l + 1, m = 2n + 1) n ∈ [−l, l], l ∈ Z+ (B.6)

with

y2l
2n(x) = x2|n|

1F2(−l + |n|, 2 + l + |n|, 1 + 2|n|;x2) (B.7)

y2l+1
2n+1(x) = x|2n+1|

1F2(−l + |n|, 3 + l + |n|, 2 + 2|n|;x2)

Particularly relevant for us here are harmonics that are also SO(2) symmetric which are

given by

Y (2l,0)(θ, φ) =
(−)l

2l
√

2l + 1

(

l
∑

m=0

(−)m

(

l

m

)(

l + m + 1

l + 1

)

(cos θ)2m

)

. (B.8)

The lowest harmonics are therefore

Y (2,0) =
1

2
√

3
(3 cos2 θ − 1), (B.9)

Y (4,0) =
1

4
√

5
(10 cos4 θ − 8 cos2 θ + 1),

Y (6,0) =
1

8
√

7
(35 cos5 θ − 45 cos4 θ + 15 cos2 θ − 1)
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The overall normalization in (B.8) has been chosen so that the harmonics are normalized

as in [26], i.e.
∫

Y I1Y I2 = z(k)δI1I2 , z(k) =
π3

2k−1(k + 1)(k + 2)
(B.10)

Recall that the scalar harmonics can be represented as

Y I1 = CI1
i1···ikxi1 · · · xik (B.11)

where xin are Cartesian coordinates on S5 and CI
i1···ik is a totally symmetric traceless rank

k tensor of SO(6). The normalization in (B.10) corresponds to delta function normalization

for the CI ’s, i.e.

〈CI1CI2〉 ≡ CI1
i1···ikCI2i1···ik = δI1I2 . (B.12)

For the scalar harmonics we use the following definitions:
∫

D(aDb)Y
I1D(aDb)Y

I2 = z(k)q(k)δI1I2

∫

Y I1Y I2Y I3 = a(k1, k2, k3)〈CI1CI2CI3〉 (B.13)
∫

Y I1DaY
I2DaY I3 = b(k1, k2, k3)〈CI1CI2CI3〉

∫

D(aDb)Y I1DaY
I2DbY

I3 = c(k1, k2, k3)〈CI1CI2CI3〉
∫

Y I1D(aDb)Y I2DaDbY
I3 = d(k1, k2, k3)〈CI1CI2CI3〉

∫

D(aDb)Y I1(2DaDcY
I2D(cDb)Y

I3 + DcY
I2DcD(aDb)Y

I3) = e(k1, k2, k3)〈CI1CI2CI3〉

where

q(k) = ΛI

(

4 +
4

5
ΛI

)

, a(k1, k2, k3) =
π3

(1
2Σ + 2)!2

1
2
(Σ−2)

k1!k2!k3!

α1!α2!α3!
(B.14)

and Σ = k1 + k2 + k3, α1=
1
2(k2 + k3 − k1) etc. One can derive explicit formulae that

express b(k1, k2, k3), c(k1, k2, k3), d(k1, k2, k3), e(k1, k2, k3) in terms of a(k1, k2, k3) by use

partial integrations. Useful identities include:

d(k2, k1, k3) + c(k1, k2, k3) +
q(k1)

ΛI1
b(k2, k1, k3) = 0;

b(k2, k1, k3) + b(k1, k2, k3) + ΛI3a(k1, k2, k3) = 0.

We further have

D(θDθ)Y
2
0 =

6

5
(1 − 2 cos 2θ), D(θDθ)Y

4
0 =

12

5
(2 + cos 2θ − 5 cos 4θ). (B.15)

For the tensor harmonics we use the following definitions
∫

Y I1
ab DaY

I2DbY
I3 = c(t)(k

(t)
1 , k2, k3); (B.16)

∫

Y I1
ab (2DaDcY

I2D(cDb)Y
I3 + DcY

I2DcD(aDb)Y
I3) = e(t)(k

(t)
1 , k2, k3).
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The normalization of the spherical harmonic is defined as

∫

Y I1
ab Y I2

ab = z(t)(k
(t))δI1I2. (B.17)

The only tensor harmonic of relevance here is

Y
(2,0)
θθ = −3, Y

(2,0)
φφ = cos2 θ(−3 + 15 cos2 θ), Y

(2,0)
ψaψa = sin2 θ(2 − 5 cos2 θ) (B.18)

where ψa are the coordinates on S3; we thus do not need to discuss the tensor harmonics

more generally.

C. Field equations up to second order

We discuss in this appendix the derivation of the field equations up to second order in

fluctuations.

The linearized equations read

E
(1)
MN ≡ R

(1)
MN +

4

3!
hKLF o

MKM1M2M3
F o

NL
M1M2M3 (C.1)

− 1

3!
(fMM1M2M3M4F

o
N

M1M2M3M4 + fNM1M2M3M4F
o
M

M1M2M3M4) = 0

E
(1)
M1...M5

≡ (f − f∗)M1...M5 +
1

2
hL

LF o
M1...M5

− 5hK
[M1

F o
M2...M5]K

= 0 (C.2)

where

R
(1)
MN = DKhK

MN − 1

2
DMDNhL

L, hK
MN =

1

2
(DMhK

N + DNhK
M − DKhMN ). (C.3)

Projecting these equations onto the various harmonics leads to the following equations7

(E
(1)
ab )|D(aDb)Y

I1 = 0 ⇒
(

1

2
ĥσ

σ
I1 +

3

10
π̂I1

)

= 0; (C.4)

(E
(1)
ab )|

Y
I14
ab

= 0 ⇒ 1

2
(¤ + ΛI14 − 2)φ̂I14

(t) = 0;

(E(1) a
a )|Y I1 ⇒ 1

10

(

(¤ + ΛI1 − 32)π̂I1 + 80ΛI1 b̂I1 + ΛI1

(

ĥσ
σ

I1 +
3

5
π̂I1

))

= 0;

(E(1)
µνρσa)|DaY I1 = 0 ⇒ (b̂I1

µνρσ + εµνρσ
τDτ b̂I1) = 0;

(E(1)
µνρστ )|Y I1 = 0 ⇒

(

5D[µb̂I1
νρστ ] − εµνρσ

τ

(

1

2
ĥσI1

σ + ΛI1 b̂I1 − 1

2
π̂I1

))

= 0.

These equations lead to the scalar field equations quoted in section 4.1 upon elimination

of b̂µνρσ and ĥσ
σ and then diagonalization.

We now move to the quadratic order. The field equations are

E
(1)
MN = T

(2)
MN , E

(1)
M1...M5

= T
(2)
M1...M5

(C.5)

7In comparing with [21] one should note that we expand in harmonics hµν rather than h′

µν (compare

(2.5)–(2.7) with our (3.4)).
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where the quadratic corrections are given by [27]

T
(2)
M1...M5

= −1

2
hL

Lf∗
M1...M5

+ 5hK
[M1

f∗
M2...M5]K

− 5

2
hL

LhK
[M1

F o
M2...M5]K

(C.6)

+

(

1

8
(hL

L)2 +
1

4
hMLhML

)

F o
M1...M5

+ 10hK1

[M1
hK2

M2
F o

M3M4M5]K1K2

T
(2)
MN = −R

(2)
MN (C.7)

+
4

3!
hKLhS

LF o
MNM1M2M3

F o
NS

M1M2M3 +
2 · 3
3!

hK1S1hK2S2F o
MK1K2M1M2

F o
NS1S2

M1M2

− 4

3!
hKS(fMKM1M2M3F

o
NS

M1M2M3 + fNKM1M2M3F
o
MS

M1M2M3)

+
1

3!
fMM1...M4fN

M1...M4

where

R
(2)
MN = −DK(hK

L hL
MN ) +

1

2
DN (hKLDMhKL) +

1

2
hK

MNDKhL
L − hL

MKhK
NL (C.8)

These quantities were computed to second order in the field s in the de Donder gauge

in [26], by substituting the linear solution of the field equations

hI1
µν = U(k)sI1go

µν + W (k)D(µDν)s
I1; (C.9)

hI1
αβ = V (k)sI1gαβ , bI1 = −sI1;

V (k) = −5

3
U(k) = 2k, W (k) =

4

k + 1
.

As discussed in the main text, the resulting field equations will be applicable to other

gauge choices provided that one replaces each field by the corresponding gauge invariant

field. In particular, for the field “sI1” must denote the appropriate gauge invariant field.

For computing the quadratic corrections, however, it is sufficient to use the field ŝI1 which

is gauge invariant to linear order, since the difference between this field and the gauge

invariant field is itself quadratic in fluctuations.

C.1 Scalar fields

To compute the corrected scalar equations we will need to use the following components

of (C.6) and (C.7):

Q1
1 ≡ 1

5
(T

(2)
ab )|D(aDb)Y 1 ; (C.10)

=
1

20q1z1

(

(c123 + d231 + d321)T23 + 32c123Dµŝ2Dµŝ3
)

,

T23 = (3V2V3 + 5U2U3)ŝ
2ŝ3 + W2W3D

(µDν)ŝ2D(µDν)ŝ
3.

The notation in the first line implies the projection of the tensor (which is quadratic in

spherical harmonics) onto the spherical harmonic. (Note that the factor of five is included
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in the definition so as to match the conventions of [26]). Similarly one has

Q1
2 ≡ 1

5
(T (2)

a
a)|Y 1 =

1

20z1

(

10S123 + T23(b123 − 2f3a123) + 32Dµŝ2Dµŝ2b123

)

,

S123 = V3U2a123D
µ(ŝ2Dµŝ3) + W2V3a123Dµ(D(µDν)ŝ2Dν ŝ2) (C.11)

−V2V3b213ŝ
2ŝ3 − 8(a123f2f3ŝ

2ŝ3 + b123D
µŝ2Dν ŝ

3) − a123V2(64f3 + 80V3)ŝ
2ŝ3.

We also need

(T (2)
µνρσa)|DaY 1 ≡ −εµνρστ Qτ1

3 , (C.12)

Qτ1
3 = − 1

f1z2

(

(U2 + 3V2)ŝ
2Dτ ŝ3 + W2D

(τDρ)ŝ2Dρŝ
3
)

b213;

(T (2)
µνρστ )|Y 1 ≡ Q1

4εµνρστ , (C.13)

Q1
4 = − 1

4z1

(

T23 − (16V2f3 + 40V2V3)ŝ
2ŝ3

)

a123.

For the scalar field coupling to the tensor harmonic we need

QI14
(t) ≡ (T

(2)
ab )|

Y
I14
ab

, (C.14)

=
1

4z(t)1

(

d
(t)
123T23 + 32c

(t)
123Dµŝ2Dµŝ3

)

.

Then the corrected equations of motion are written in terms of quantities just defined

as

(¤ − k(k − 4))sI1 =
1

2(k + 2)
((k + 4)(k + 5)Q1 + Q2 + (k + 4)(DµQµ

3 + Q4))
I1 ;

(¤ − (k + 8)k(k + 4))tI1 =
1

2(k + 2)
(k(k − 1)Q1 + Q2 − k(DµQµ

3 + Q4))
I1 , (C.15)

whilst the corrected equation for the scalar φI14
(t) is

(¤ − k(k + 4))φI14
(t) = 2QI14

(t) . (C.16)

C.2 Tensor fields

To compute the correction to the metric and KK gravitons we we need T
(2)
µν . For brevity

we will include only the terms of interest here, namely ŝ2. The curvature contribution to

(T
(2)
µν )|Y I is then

1

zI

(

−4

9
aI22DµDρDσ ŝ2DνDρDσŝ2 − 32

3
aI22D

ρŝ2DρDµDν ŝ
2 − 8

9
bI22DµDρŝ

2DνD
ρŝ2

+
8

9
aI22(D

ρDσŝ2DρDσ ŝ2)go
µν +

(

40

9
bI22 − 32aI22

)

ŝ2DµDν ŝ2 (C.17)

−136

9
aI22(Dµŝ2Dν ŝ2) +

32

9
(aI22 − bI22)(ŝ

2)2go
µν

)
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whilst the field strength contribution to (T
(2)
µν )|Y I is

1

zI

(

go
µν

(

32

9
aI22(2(ŝ

2)2 − DρDσ ŝ2DρDσ ŝ2) − 4bI22(Dρŝ
2Dρŝ2)

)

− 64

3
aI22ŝ

2DµDν ŝ
2

+8Dµŝ2Dν ŝ2bI22

)

. (C.18)

These lead to the following equation for the graviton,

(LE + 4)h0
µν = T (2)

µν |Y 0 − go
µν

(

5

3
Q0

2 + 8Q0
4

)

|Y 0 (C.19)

where the linearized Einstein operator is defined as usual by

LEλµν =
1

2
(−¤λµν + DρDµλρ

ν + DρDνλρ
µ − DµDνλ

ρ
ρ). (C.20)

The term proportional to Q2 and Q4 arise when eliminating ¤π̃0 and h̃σ0
σ from the equation.

The following identities prove useful:

LE((DρDσŝ2DρDσ ŝ2)go
µν) = −1

2
¤(DρDσ ŝ2DρDσ ŝ2)go

µν − 3DµDνDρDσ ŝ2DρDσŝ2

−3DµDρDσ ŝ2DνD
ρDσ ŝ2

LE(DµDρŝ
2DνD

ρŝ2) = 2DρDµŝ2DρDν ŝ
2 − DµDρDσ ŝ2DνDρDσ ŝ2

+go
µν(DρDσ ŝ2DρDσ ŝ2) − 9Dρŝ2DµDνDρŝ

2 − 7Dµŝ2Dν ŝ
2

+12ŝ2DµDν ŝ2 − (Dρŝ2Dρŝ
2)go

µν , (C.21)

LE((Dρŝ2Dρŝ
2)go

µν) = 8(Dρŝ2Dρŝ
2)go

µν − go
µν(DρDσ ŝ2DρDσ ŝ2)

−3Dρŝ2DµDνDρŝ
2 − 3DρDµŝ2DρDν ŝ2;

LE(ŝ2DµDν ŝ
2) = −3Dµŝ2Dν ŝ

2 − (Dρŝ2Dρŝ
2)go

µν + DµDρŝ2DνDρŝ
2;

LE((ŝ2)2go
µν) = 4(ŝ2)2go

µν − (Dρŝ2Dρŝ
2)go

µν − 3ŝ2DµDν ŝ2 − 3Dµŝ2Dν ŝ2.
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